IEEE Projects Mobile Computing 2021
ALBA-R: Load-Balancing Geographic Routing Around Connectivity Holes in Wireless Sensor Networks
This paper presents ALBA-R, a protocol for convergecasting in wireless sensor networks. ALBA-R features the cross-layer integration of geographic routing with contention-based MAC for relay selection and load balancing (ALBA), as well as a mechanism to detect and route around connectivity holes (Rainbow). ALBA and Rainbow (ALBA-R) together solve the problem of routing around a dead end without overhead-intensive techniques such as graph planarization and face routing. The protocol is localized and distributed, and adapts efficiently to varying traffic and node deployments. Through extensive ns2 based simulations, we show that ALBA-R significantly outperforms other convergecasting protocols and solutions for dealing with connectivity holes, especially in critical traffic conditions and low-density networks. The performance of ALBA-R is also evaluated through experiments in an outdoor testbed of TinyOS motes. Our results show that ALBA-R is an energy-efficient protocol that achieves remarkable performance in terms of packet delivery ratio and end-to-end latency in different scenarios, thus being suitable for real network deployments.
secure data aggregation in wireless sensor networks filtering out attackers impact
Wireless sensor networks (WSNs) are increasingly used in many applications, such as volcano and fire monitoring, urban sensing, and perimeter surveillance. In a large WSN, in-network data aggregation (i.e., combining partial results at intermediate nodes during message routing) significantly reduces the amount of communication overhead and energy consumption. The research community proposed a loss-resilient aggregation framework called synopsis diffusion, which uses duplicate-insensitive algorithms on top of multipath routing schemes to accurately compute aggregates (e.g., predicate count or sum). However, this aggregation framework does not address the problem of false subaggregate values contributed by compromised nodes. This attack may cause large errors in the aggregate computed at the base station, which is the root node in the aggregation hierarchy. In this paper, we make the synopsis diffusion approach secure against the above attack launched by compromised nodes. In particular, we present an algorithm to enable the base station to securely compute predicate count or sum even in the presence of such an attack. Our attack-resilient computation algorithm computes the true aggregate by filtering out the contributions of compromised nodes in the aggregation hierarchy. Extensive analysis and simulation study show that our algorithm outperforms other existing approaches.